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Abstract Emergency Medical Services (EMS) systems aim to provide immediate

care in case of emergency. A careful planning is a major prerequisite for the suc-

cess of an EMS system, in particular to reduce the response time. Unfortunately,

the demand for emergency services is highly variable and uncertainty should not be

neglected while planning the activities. Several optimization models have been pro-

posed in the literature to deal with EMS planning-related problems, e.g. the Ambu-

lance Location and Dispatching Problem (ALDP). However, most of the models are

deterministic and neglect demand uncertainty. In this paper, we formulate and vali-

date a robust counterpart of the ALDP to deal with demand uncertainty, exploiting

the cardinality-constrained approach. Numerical experiments inspired by a real case

show promising results and prove the practical applicability of the approach.
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1 The Ambulance Location and Dispatching Problem

Emergency Medical Services (EMS) systems consist of the clinical activities and the

ambulance transportation in response to an emergency call. EMS plays an important

role in modern health care systems, as an adequate response to distress calls may have

a crucial impact on patients’ health conditions. In particular, one of the main issues

is to reduce, or to keep under a given threshold, the time between the distress call and

the arrival of the ambulance to the emergency site. The body of literature devoted to

EMS design and management is huge; we refer the interested reader to [2] and [6],

which report classifications of EMS problems, formulations, and solving approaches.

Unsurprisingly, both reviews identify uncertainty on the demand and availability of

ambulances upon a call arrival as open and important issues to address in future

research.

This paper deals with the Ambulance Location and Dispatching Problem (ALDP),

which aims to choose at the same time the location for the available ambulances and

a dispatch policy, which decides which ambulance should answer any arriving call.

Although most of location problems assume that any call is answered by the closest

available ambulance, this policy is not always optimal [3, 11]. Thus, we consider the

formulation proposed in [4, 5], where the dispatch policy takes the form of a list of

ambulances for each demand zone, in which the ambulances are sorted according to

their priority to answer the calls in the zone.

To deal with stochastic demands, we introduce a robust counterpart of the deter-

ministic ALDP, based on the cardinality-constrained approach [8]. Such an approach

has been recognized to be very effective to cope with uncertainty in health care prob-

lems [1] and has been successfully applied to other health care facilities [9], but it

has never been applied to EMS. In fact, although several works deal with uncertainty

in the context of ambulance location [7, 12], none of them has previously used this

approach.

The paper is organized as follows. The ALDP formulation and the proposed

robust counterpart are presented in Sect. 2. Computational experiments are detailed

in Sect. 3, and the results in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Robust Problem Formulation

2.1 Sets, Parameters and Decision Variables

The ALDP is defined on a graph G = (V ,E). V is given by I ∪ J, where I =
{v1,… , vn} and J = {vn+1,… , vn+m} represent all demand zones and potential wait-

ing positions, respectively. E = {(vi, vj) ∶ vi, vj ∈ V} is the set of the edges connect-

ing the nodes in the graph. A demand zone vi ∈ I is characterized by the coordinates

of its centroid and a demand di, which is considered to be uncertain in our frame-

work. A potential waiting position vj ∈ J is defined as a demand zone where pj
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vehicles (pj ≥ 1) can be located and from where they move to join the different calls.

A travel time tij is associated to each edge (vi, vj) ∈ E.

Moreover, K denotes the set of all available vehicles, and Zi the set of vehicles in

the dispatch list of vi ∈ I. Finally, we define the capacity Wi as the maximum number

of demands an ambulance i can serve in a given period, and the busy fraction qi as

the time fraction an ambulance i is expected to be busy (and therefore unavailable to

answer calls).

The ALDP considers two types of decisions: location decisions to select a waiting

position for each vehicle, and dispatch decisions.

The latter are made according to the list Zi of each demand zone i, choosing the

first available ambulance starting from the beginning of the list. However, for life-

threatening calls, the nearest available vehicle is sent to the scene of the incident. If

no vehicle is available in the dispatch list of a zone, the nearest available vehicle is

sent. Finally, if no vehicle is available at all, the call is placed on a waiting queue or

redirected to another service; in the latter case, we consider an arbitrary value T for

the response time.

The following assumptions are included (see [4, 5]):

1. Location and dispatch decisions are taken for a given planning horizon.

2. The number of vehicles available in the planning horizon is fixed and known.

3. All vehicles have the same workload capacity (Wi = W ∀i).
4. All vehicles have the same busy fraction (qi = q ∀i); although this assumption

needs to be empirically confirmed, it is broadly used in EMS design problems.

5. All of the dispatch lists have the same cardinality, without loss of generality.

Two groups of decision variables are defined to adequately consider location and

dispatch decisions. They are summarized in Table 1, together with problem sets and

parameters.

2.2 Objective Function and Constraints

A brief description of the deterministic model is given in the following; details can

be found in [4] and [5].

The ALDP aims at minimizing the overall expected response time. Based on the

dispatch lists, the expected response time for a demand zone is given by three contri-

butions: i) the sum of the response times of the vehicles in the dispatch list, weighted

by their probability to answer the call; ii) the time corresponding to the vehicles avail-

able to respond to emergency calls, but not in the dispatch list; iii) the time of the

calls placed in queue or referred to another service because no vehicle is available.

Only the first contribution is considered when formulating the ALDP; the others are

calculated afterwards when the solution is executed, based on the decisions and the

system characteristics.
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Table 1 ALDP sets, parameters and decision variables

Sets

I demand zones

J potential waiting positions for vehicles

K available vehicles

Zi dispatch list of zone i (all with the same

cardinality |Z|)
Parameters

di demand of zone i
tji travel time from zone j to zone i
pj maximum number of vehicles in j
W capacity, i.e. maximum number of demands a

vehicle can serve in the time

horizon (same for all vehicles)

q busy fraction (same for all vehicles)

Decision variables

wzk
i equal to 1 if vehicle k is in position z of the

dispatch list of zone vi,
0 otherwise

yzkij equal to 1 if vehicle k, located in zone vj, is in

position z of the dispatch list

of vi, 0 otherwise

The formulation is completed by three sets of constraints. The first set ensures that

each vehicle is located at a waiting position, guaranteeing that the maximum number

of vehicles pj is respected. The second set ensures that the demands assigned to a

vehicle respect its capacity, considering for each vehicle the busy fraction and the

presence in one or more dispatch lists. Finally, the third set imposes that a vehicle

cannot occupy more than one position in the dispatch list of each zone, and that

exactly one vehicle is at each position of each dispatch list.

2.3 Cardinality-Constrained Robust Formulation

To model the uncertain demands, we apply the cardinality-constrained approach to

the parts of the model in [4, 5] where parameters di appear. First, we convert the

objective function into a set of constraints by adding a new variable 𝜂k. Thus, the

new objective function is:

min

∑

k∈K
𝜂k (1)
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with the additional constraints:

∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1ditjiyzkij ≤ 𝜂k ∀k (2)

Then, we consider the uncertain demands as independent random variables ̃di
(i ∈ I). According to [8], each of them is characterized by a nominal value ̄di and a

maximum variation ̂di, i.e. ̃di ∈
[
̄di − ̂di, ̄di + ̂di

]
.

Thus, demands can be expressed as ̃di = ̄di + 𝛼i
̂di, where each 𝛼i ∈ [−1, 1] rep-

resents the deviation of the demand of zone i from its nominal value ̄di, standardized

by the half-length of the uncertainty interval ̂di. For example, 𝛼i = 0 corresponds to

̃di = ̄di, 𝛼i = 1 to ̃di = ̄di + ̂di, and 𝛼i = −1 to ̃di = ̄di − ̂di.
Demands ̃di appear in the new constraint (2) and in the workload capacity limit

for each vehicle (see [4, 5]) which are rewritten in the cardinality-constrained robust

framework as:

∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1 ̄ditjiyzkij +

∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1(𝛼i ̂di)tjiyzkij ≤ 𝜂k ∀k (3)

∑

z∈Z

∑

i∈i
(1 − q)qz−1 ̄diwzk

i +
∑

z∈Z

∑

i∈i
(1 − q)qz−1(𝛼i ̂di)wzk

i ≤ W ∀k (4)

Satisfying constraints (3) and (4) for all possible demand realizations, i.e. for all

combinations of {𝛼i, i ∈ I}, would lead to a too conservative (and unrealistic)

solution. In fact, it is very unlikely that all of the demand coefficients assume their

worst (highest) values simultaneously (i.e. 𝛼i = 1 ∀i ∈ I). Thus, in the cardinality-

constrained approach, we limit the number of zones that ask for the highest demand,

in each constraint, by means of the robustness parameters {𝛤k, k ∈ K}. Indeed, the

robust cardinality-constrained solution guarantees that the solution remains feasible

if up to 𝛤k parameters 𝛼i go to the maximum value equal to 1 in each constraint,

while the others remain at the nominal value equal to 0.

In the following, we consider the same value 𝛤 for all vehicles (i.e. 𝛤k = 𝛤 ∀k);

however, the robust counterpart we derive can be easily extended to the case in which

the robustness parameters {𝛤k, k ∈ K} vary from vehicle to vehicle. Parameter 𝛤

controls the level of robustness of the solution and can be set equal to {0, 1,… , |I|}
(we consider only integer values). Fixing 𝛤 = 0 guarantees feasibility only if all of

the random variables assume their nominal value (deterministic solution), whereas

setting 𝛤 = |I| means no restrictions (most conservative solution).

We underline that, in our formulation, the optimal values 𝛼i can be different from

constraint to constraint. This simply increases the level of robustness of the solution

and has to be accounted while analyzing the impact of 𝛤 .



104 V. Nicoletta et al.

Briefly, to derive the robust counterpart, (3) and (4) are rewritten as:

∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1 ̄ditjiyzkij + 𝛽k ≤ 𝜂k ∀k (5)

∑

z∈Z

∑

i∈i
(1 − q)qz−1 ̄diwzk

i + 𝛾k ≤ W ∀k (6)

where 𝛽k and 𝛾k are the optima of the two following knapsack problems (generated

for each k):

𝛽k =max
∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1(𝛼i ̂di)tjiyzkij

∑

i∈I
𝛼i ≤ 𝛤

𝛼i ∈ [0, 1] ∀i ∈ I

(7)

𝛾k =max
∑

z∈Z

∑

i∈i
(1 − q)qz−1(𝛼i ̂di)wzk

i

∑

i∈I
𝛼i ≤ 𝛤

𝛼i ∈ [0, 1] ∀i ∈ I

(8)

Applying the Strong Duality Theorem [8], we obtain their dual problems, which

can be substituted in (5) and (6) to obtain the following robust formulation:

min

∑

k∈K
𝜂k (9)

s.t.

∑

i∈I

∑

z∈Z

∑

j∈J
(1 − q)qz−1 ̄ditjiyzkij + 𝛤aofk +

∑

i∈I
bofki ≤ 𝜂k ∀k (10)

∑

z∈Z

∑

i∈i
(1 − q)qz−1 ̄diwzk

i + 𝛤aconk +
∑

i∈I
bconki ≤ W ∀k (11)

aofk + bofki ≥ (1 − q)qz−1 ̂ditjiyzkij ∀k, i, z, j (12)

aconk + bconki ≥ (1 − q)qz−1 ̂diwzk
i ∀k, i, z (13)

∑

z∈Z
wzk
i ≤ 1 ∀k, i (14)

∑

k∈K
wzk
i = 1 ∀z, i (15)
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wzk
i =

∑

j∈J
yzkij ∀z, i, k (16)

wzk
i ∈ {0, 1} ∀z, i, k (17)

yzkij ∈ {0, 1} ∀z, i, k, j (18)

𝜂k, a
of
k , a

con
k ≥ 0 ∀k (19)

bofki , b
con
ki ≥ 0 ∀k, i (20)

Constraints (14)–(18) are the same as in the deterministic model, while (10)–(13)

and (19)–(20) are those modified or added in the robust counterpart. The new vari-

ables aofk , b
of
ki , a

con
k , bconki are the dual of those appearing in the two knapsack problems.

3 Computational Experiments

Numerical tests have been run considering a set of instances based on the case

of Montréal, QC, Canada. Instances (see [10]) have been generated using public

annual reports published by Urgences-santé (2006) and Statistics Canada (2011).

They include 30 demand zones, which represent the central part of the city of Mon-

tréal, whose nominal demands ̄di range from 41 to 496. Moreover, vehicle capacity

W has been set equal to 1500, and busy fraction q to 0.5.

The deterministic model has been solved considering the nominal demand ̄di for

each zone i ∈ I. Then, for the robust model, we have set the maximum variation ̂di
equal to 0.25 ̄di for each demand zone i ∈ I.

We analyze the impact of 𝛤 in terms of feasibility and price to pay for the

improved feasibility (price of robustness). For this purpose, we consider 11 values

of 𝛤 , ranging from 𝛤 = 0 (the deterministic model) to 𝛤 = |I| (the case in which

each demand takes its maximum value) as follows:

𝛤 = k
10

|I|, k ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Being |I| = 30, the considered values of 𝛤 are integer.

3.1 Execution and Solutions Evaluation

Three types of demand scenarios have been generated to evaluate the behavior of the

obtained solutions, based on the values ̄di and ̂di in each zone i:
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∙ normal scenarios: each di follows a Normal distribution centered in ̄di, and ̂di
represents about the 95% quantile, i.e. di ∼ N

(

𝜇 = ̄di, 𝜎 =
̄di+ ̂di
2

)

.

∙ uniform scenarios: each di is equal to ̄di + 𝛼i
̂di, where each 𝛼i follows a uniform

distribution in the interval [−1, 1].
∙ worst case scenarios: each di is equal to ̄di+𝛼i

̂di, where each 𝛼i follows a uniform

distribution in the interval [0, 1]. Unlike the previous cases, these demands are not

centered in their respective ̄di. Therefore, these scenarios refer to a situation in

which the demands have been underestimated, which represent an interesting case

for health care managers.

For each alternative, 100 Monte Carlo samples have been drawn from each demand

distribution, thus obtaining as many execution scenarios of each type.

To evaluate the feasibility of a solution in a scenario, we compute the maximum

value of the workload Wmax as:

Wmax = max
k∈K

∑

z∈Z

∑

i∈i
(1 − q)qz−1diwzk

i (21)

where di denotes here the demand in the scenario. A solution is considered to be

unfeasible if the associated Wmax is greater than the workload capacity W used to

solve the problem. Similarly, to evaluate the price of robustness in a scenario, we

first compute the value of the objective function OF as:

OF =
∑

i∈I

∑

z∈Z

∑

k∈K

∑

j∈J
(1 − q)qz−1ditjiyzkij (22)

where di denotes, once again, the demand in the scenario. Then, we compute the

price of the robust solution (i.e. its additional cost when executed) as the difference

ΔOF between the robust OF and the corresponding deterministic OF when 𝛤 = 0:

ΔOF = OFrobust − OFdeterministic (23)

4 Results

All instances have been solved to optimality within 1 hour, although the computa-

tional times increase from 108 up to 2514 seconds as the value of 𝛤 increases.

Results are provided in Fig. 1. Solutions are always feasible for 𝛤 ≥ 0.3|I| in the

normal and uniform scenarios, while more than the 75% of the solutions are feasible

for 𝛤 ≥ 0.5|I| in the worst case scenario. As for the price of robustness, we observe

that ΔOF values are always below 6 s; thus, considering that OF values are around
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Fig. 1 Feasibility Wmax (left column) and price of robustness ΔOF (right column) for normal sce-

nario (a), uniform scenario (b), and worst case scenario (c).
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1500 s, they can be considered negligible. In other words, we can conclude that the

price of robustness is highly affordable in order to guarantee feasible solutions.

5 Conclusions

In this paper, we propose and validate a robust counterpart of the ALDP in [4, 5]

based on the cardinality-constrained approach. Results from the application to a real-

istic test case show that demand variations with respect to the expected values impair

the feasibility of the deterministic solution, while its robust counterpart performs bet-

ter for proper values of parameter 𝛤 . In particular, in the considered test case, values

of 𝛤 between the 30 and the 50% of the demand zones (meaning that the 30−50% of

the demand zones assume the worst case value) allow the solution to remain feasible

when tested against several demand scenarios. At the same, the observed increase of

the objective function is negligible.

We may conclude that including the robustness in the ALDP problem is promis-

ing, at least in the tested case, because of the capability to increase the feasibility of

the solutions while keeping limited the price to pay in terms of increased objective

function value.
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